
1

IGC Vali changes
This document proposes changes to the existing IGC Specification regarding the
requirements of validation programs. The changes are required so that unattended
programs (online web servers, for example) can satisfactorily perform validation checks.

The problem
The current situation is that validation programs can only return one of two states (PASSED or
FAILED), with any errors being reported by visual text output. This is acceptable when there
is human input to read the text, but otherwise there is no reliable way to establish if the file
has failed because it has been modified or because of some other condition.

The solution
This is designed to be backward-compatible and easily incorporated into existing software.
It requires that one of three states are returned (PASSED, FAILED, ERROR) represented by an
integer value that acts as a status code. These are outlined below.

State Status Code Status Name Description

PASSED 1 STATUS_IGC_PASSED The IGC file passed the validation check

FAILED 2 STATUS_IGC_FAILED The IGC file failed the validation check

ERROR 100 STATUS_ERR_FILE_OPEN The IGC file cannot be opened

ERROR 101 STATUS_ERR_FILE_OTHER The IGC file is not supported by vali program

ERROR 102 STATUS_ERR_VALI_ABORT The vali program was aborted

ERROR 200 STATUS_ERR_VALI_ERROR Unexpected error in vali program

ERROR 201-299 STATUS_ERR_VALI_XXXXX Specific errors private to the vali program

The ERROR status codes are split into two groups, user errors (100-102) and vali program
errors (200-299), to help identify the possible cause. More information about status codes is
given below. Note that the status names are informational only.

How the status code is returned depends on whether the vali program is an executable or a
DLL. For executables a result string is added to the output, while for DLLs a new function is
used to return the status code.

2

Vali executables
The result string is included as the last line of the output, formatted as follows: the word
IGCVALI followed by a colon, then the state (PASSED|FAILED|ERROR), followed by a comma,
then the status code. Examples:

IGCVALI:PASSED,1
IGCVALI:FAILED,2
IGCVALI:ERROR,x
where x represents the status code

Note that there are no spaces between the values and that all characters are upper-case.
Programs that output usage information (help) when called without any parameters must
always include a result string in the last line of the output, reporting an error with a status
code of STATUS_ERR_FILE_OPEN. For example:

Usage vali-xxx <filename>
...
IGCVALI:ERROR,100

The following are general rules for vali executables, which must be strictly adhered to:

● Programs must be 32-bit console applications.
● Programs must use structured exception handling to catch hardware and software

exceptions.
● Programs must allow their output to be redirected: all output must be sent to STD_OUT

or STD_ERR (unless otherwise directed by a private option parameter).
● Programs must not show any windows (dialogs, message boxes, progress bars etc).

This is particularly important for programs running on an unattended system.
● Programs must always include a result string in the last line of the output, unless a

private option parameter is being used.

Vali dlls
A new function is required to return the status code, ValidateLogEx, which is similar to the
existing ValidateLog function except that it returns an unsigned integer, the status code.

DWORD ValidateLogEx(LPCTSTR fileName)

If quietMode has been set to TRUE in the call to InitializeDLL, then the program must
ensure that no windows are displayed (dialogs, message boxes, progress bars etc). This
is particularly important when being run on an unattended system. Also, dlls must use
structured exception handling to catch hardware and software exceptions.

3

Vali program flow
In order to return consistent results, the vali program must perform the following steps:

1. Check that a file name has been passed in. If not, return STATUS_ERR_FILE_OPEN.
2. Open the IGC file for reading. If this fails, return STATUS_ERR_FILE_OPEN.
3. Read the first four bytes and check they match AXXX, where XXX is a three-

character identifier supported by the program. If they do not match, return
STATUS_ERR_FILE_OTHER.

4. Read and save the G Record from the end of the file. If it does not exist, or is an
empty value, return STATUS_IGC_FAIL.

5. Read the relevant IGC data to create a new G Record, then check that it matches
the G-Record from the file. Return STATUS_IGC_PASSED if it matches, otherwise return
STATUS_IGC_FAIL.

If any other errors or exceptions are encountered during this process, the vali program
must return STATUS_ERR_VALI_ERROR, or a vali-defined status code in the range 201-299. If
the process is aborted by the user before it has completed, the vali program must return
STATUS_ERR_VALI_ABORT.

Status Codes

STATUS_IGC_PASSED
This must only be returned if the IGC file has successfully passed the validation check, with
the following conditions being satisfied:

● the IGC file is applicable (AXXX matches expected XXX).
● the file contains a G Record.
● the G Record in the file matches the G Record created from the file data.

STATUS_IGC_FAILED
This must only be returned if the IGC file has failed the validation check, with the following
conditions being satisfied:

● the IGC file is applicable (AXXX matches expected XXX).
● there is either no G Record in the file, it has an empty value or it does not match the

G Record created from the file data.

STATUS_ERR_FILE_OPEN
This must only be returned if the vali program cannot open the IGC file. This will happen if no
file name has been passed to the program, if the file name points to an incorrect location, or
because of any other program or system error.

STATUS_ERR_FILE_OTHER
This must only be returned if the vali program does not support the IGC file, with the

4

following condition being satisfied:

● the IGC file is not applicable (AXXX does not match expected XXX).

Specifically this means that the first four bytes of the file data do not contain the characters
AXXX, where XXX matches a three-character identifier supported by the vali program. This
covers situations where the file is empty, is not in IGC format or is not applicable to the vali
program.

STATUS_ERR_VALI_ABORT
This must only be returned if the vali program has been aborted by the user before it has
finished its normal processing. For vali executables this means that a CTRL event has been
sent to the program, while for vali dlls that a progress indicator has been cancelled or that
the dll has been unloaded unexpectedly.

STATUS_ERR_VALI_ERROR
This must only be returned when there is an error condition that does not satisfy any of the
status codes defined above, for example an access violation caught by structured exception
handling. For more robust error reporting, specific errors can be given their own status codes
in the range 201-209 (STATUS_ERR_VALI_XXXXX).

STATUS_ERR_VALI_XXXXX
These are private status codes that are defined by the vali program. They must be in the
range 201-299 and can be used to report specific errors that would otherwise be covered by
the more general STATUS_ERR_VALI_ERROR category.

